This is the current news about centrifugal pump head calculation example|centrifugal pump selection calculator 

centrifugal pump head calculation example|centrifugal pump selection calculator

 centrifugal pump head calculation example|centrifugal pump selection calculator Oily sludge is one of the main hazardous wastes which seriously endangers the ecological environment and human health. In this paper, in order to effectively treat oily sludge, a novel high-speed stirring (HSS) method was proposed to clean oily sludge, and the main parameters affecting the residual oil rate of oily sludge were studied experimentally. Firstly, the .The Oily Sludge Decanter separates solid and liquid components in oily sludge and drilling waste through chemical enhancement, heating, and dilution, followed by high-speed separation. The .

centrifugal pump head calculation example|centrifugal pump selection calculator

A lock ( lock ) or centrifugal pump head calculation example|centrifugal pump selection calculator In material handling, reliability and adaptability are key to maintaining smooth operations across industries. Since 1977, Hapman’s Helix® Flexible Screw Conveyor has been a trusted solution for businesses seeking efficient and flexible material transport. Hapman’s Helix® continues to offer the same proven performance with updated options and configurations to meet modern .

centrifugal pump head calculation example|centrifugal pump selection calculator

centrifugal pump head calculation example|centrifugal pump selection calculator : vendor By designing with a wider hopper opening, the screw conveyor could collect the waste cuttings fed by an excavator. GN Screw Conveyor Features & Benefits GN’s screw conveyor is designed .Commonly known as auger, has horizontal, inclined and combined form, and can be used with .
{plog:ftitle_list}

Operating as part of National Oilwell Varco (NOV), NOV Brandt Product Sales is a global provider of mechanical solids control equipment, used to remove detrimental solids from the mud system when drilling for oil.

Centrifugal pumps are widely used in various industries for moving fluids from one place to another. One of the key parameters to consider when selecting a centrifugal pump is the pump head, which is a measure of the energy imparted to the fluid by the pump. In this article, we will discuss the centrifugal pump head calculation formula and provide an example to illustrate how to calculate the head of a centrifugal pump.

1. Calculate the total head and select the pump. 2. Calculate the NPSH available and check with respect to the NPSH required. 3. Calculate the specific speed and predict the pump efficiency. Calculate the suction specific speed and Thoma number and check the prediction of the

Centrifugal Pump Head Calculation Formula

The total head (H) of a centrifugal pump can be calculated using the following formula:

\[ H = \frac{P_{outlet} - P_{inlet}}{\rho \cdot g} + \frac{v_{outlet}^2 - v_{inlet}^2}{2 \cdot g} + z_{outlet} - z_{inlet} \]

Where:

- \( P_{outlet} \) = Pressure at the outlet (Pa)

- \( P_{inlet} \) = Pressure at the inlet (Pa)

- \( \rho \) = Density of the fluid (kg/m³)

- \( g \) = Acceleration due to gravity (m/s²)

- \( v_{outlet} \) = Velocity at the outlet (m/s)

- \( v_{inlet} \) = Velocity at the inlet (m/s)

- \( z_{outlet} \) = Elevation at the outlet (m)

- \( z_{inlet} \) = Elevation at the inlet (m)

Pump Head Calculation Example

Let's consider an example to calculate the head of a centrifugal pump. Assume we have a centrifugal pump pumping water at 20°C with a flow rate of 10 L/s. The vacuum gauge at the inlet reads 0.031 MPa, and the pressure gauge at the outlet reads 0.126 MPa (gauge pressure). The density of water at 20°C is approximately 998 kg/m³.

Given:

- Flow rate (Q) = 10 L/s = 0.01 m³/s

- Inlet pressure (P_{inlet}) = 0.031 MPa = 31,000 Pa

- Outlet pressure (P_{outlet}) = 0.126 MPa = 126,000 Pa

- Density of water (\( \rho \)) = 998 kg/m³

- Acceleration due to gravity (\( g \)) = 9.81 m/s²

- Inlet velocity (v_{inlet}) = 0 m/s (assumed)

- Outlet velocity (v_{outlet}) = Q / A_{outlet}, where A_{outlet} is the outlet area

Next, we need to calculate the elevation difference (\( z_{outlet} - z_{inlet} \)). If the pump is installed horizontally, this term can be neglected.

Now, we can substitute the given values into the total head formula to calculate the head of the centrifugal pump.

\[ H = \frac{126,000 - 31,000}{998 \cdot 9.81} + \frac{v_{outlet}^2 - 0}{2 \cdot 9.81} \]

\[ H = \frac{95,000}{9,807} + \frac{v_{outlet}^2}{19.62} \]

\[ H = 9.68 + \frac{v_{outlet}^2}{19.62} \]

What is head and how is it used in a pump system to make calculations easier? …

Fluid Sealing International (FSI) is a Mechanical Seals Manufacturer dedicated to providing high quality products to meet our customers’ sealing . Home; About Us; . Case Study: Pump Bearing Housing – Reverse Engineering & .

centrifugal pump head calculation example|centrifugal pump selection calculator
centrifugal pump head calculation example|centrifugal pump selection calculator.
centrifugal pump head calculation example|centrifugal pump selection calculator
centrifugal pump head calculation example|centrifugal pump selection calculator.
Photo By: centrifugal pump head calculation example|centrifugal pump selection calculator
VIRIN: 44523-50786-27744

Related Stories